2022年8月16日-20日 苏州

■ 授课日程* 仅作参照,由于授课期间有互动交流,每时段授课时间可能出现变化 2022 年 8 月 16 日 - 20 日(周二、周三、周四、周五、周六)

日程安排	2022/8/16 8:30-17:30			
课程名称	光源选型实战技巧	光学成像基础知识及选型	工业相机的应用与选型	
授课老师	上海纬朗光电科技有限公司 实战专家 江锐	湖南长步道光学科技有限公司 实战专家 张浩	杭州海康机器人技术有限公司 实战专家 周天恩	
课时	120 分钟	120 分钟	120 分钟	
课程 内容 介绍	了解: (1) 机器视觉相关的基本概念 (2) 机器视觉的光源的分类及特点 (3) 机器视觉中光的特点及应用 (4) 机器视觉中打光方式基本概念 (5) 机器视觉中配件的应用及功能 (6) 机器视觉中光源的选择/案例 (7) 机器视觉中控制器的选择	了解: (1) 光学成像基础知识 (2) 远心镜头与非远心镜头的区别 (3) 工业镜头类型与应用 (4) 特种镜头介绍和应用 (5) 工业镜头选型	了解: (1) 工业相机的基础知识及应用 (2) 读码器相机的基础知识及应用 (3) 3D 相机的基础知识及应用 (4) 选型技巧 掌握: (1) 各类相机的特点及选型方法 (2) 视觉工具软件 vision master 的基本使用	

机器视觉技术工业应用讲习班

China Workshop on Industrial Applications of Machine Vision Technology

日程安排	2022/8/17 8:30-17:30				
课程名称	视觉深度学习基础	分类网络基础知识及模型优化方法	检测模型基础知识	分割模型基础知识	实践案例:安全带检测
授课老师	达摩院算法专家 在竹	达摩院算法专家 在竹	达摩院算法专家 在竹	达摩院算法专家 在竹	达摩院高级算法工程师 虹起
课时	60 分钟	60 分钟	60 分钟	60 分钟	60 分钟
	了解:	了解:	了解:	了解:	(1) 实战案例的问题分析
	(1) 视觉深度学习涉及的典型算法流	(1) 物体分类的基本概念和流程	(1) 什么是目标检测	(1) 分割的基本概念	(2) 实战案例的破题过程与方案设计
	程	(2) 常见卷积神经网络 (CNN) 结构	(2) 常用的目标检测方法	(2) 怎么解决语义分割问题	(3) 方案执行过程中的问题及解决思
	(2) 视觉深度学习的基本能力	(3) 深度学习分类模型训练参数	(3) 一种具体的目标检测的基本原理	(3) FCN、Mask RCNN、SOLOv2	路
	(3) 前向推理、反向传播等深度学习	掌握:	和具体流程	等常见分割网络	(4) 多种方案的效果对比及最终选择
	优化与应用的基本概念	(1) 分类模型的应用场景与挑战	(4) 常见的目标检测数据集及常见算	掌握:	原因
	(4) 深度学习算法训练与运行依赖的	(2) 模型在速度和精度上的评价方法	法的效果	(1) 语义分割的评价指标	(5) 全程复现项目从理解到交付的关
课程内容	软硬件环境	(3) 深度学习分类模型调优策略(数	掌握:	(2) 语义分割的训练和部署	键过程,提供项目实际经验参考
	掌握:	据、训练、模型)	(1) 常见目标检测方法原理		
介绍	(1) 深度学习算法的训练过程	应用:	(2) FCOS 等常用目标检测算法的使		
	(2) 常用算法:分类、检测、分割,	(1) 了解手写体数字识别	用		
	以及深度学习的应用场景	(2) ImageNet 图像分类	(3) 目标检测算法模型的评估方法和		
	(3) 深度学习算法的运行环境配置		指标		
	应用:		应用:		
	(1) 完成基本的算法训练		(1) 目标检测算法的部署参数调整		
	(2) 完成深度学习模型的部署		(2) 漏检和误报的处理		
			(3) 小目标的检测		

机器视觉技术工业应用讲习班 China Workshop on Industrial Applications of Machine Vision Technology

日程安排	2022/8/18 8:30-17:30				
课程名称	工业视觉场景中深度学习算法应用方法论	工业场景深度学习的应用-分类	工业场景深度学习的应用-检测	工业场景深度学习的应用-分割	实践中模型的选择方法
授课老师	达摩院高级产品专家 怀识	 达摩院高级算法工程师 虹起	达摩院高级算法工程师 杨昭	达摩院高级算法工程师 杨昭	达摩院算法专家 驫龘
课时	60 分钟	60 分钟	60 分钟	60 分钟	60 分钟
课程内容	了解: (1) 从缺陷特点、算法技术、物理世界及业务价值方面综合评估项目可行性的方法与模型 (2) 如何与业主方 QA 等业务人员确定缺陷图像标准 (3) 工业质检场景算法方案设计的方法 (4) 如何构建高质量的数据集合加速模型指标提升 (5) 工业质检场景中模型训练优化与数据标准修正及指标取舍的方法 掌握: (1) 工业缺陷检测项目可行性分析的方法 (2) 缺陷标准确认与更新的方法 (3) 能为复杂的质检项目进行算法模块能力的拆解 (4) 对交付过程中的数据及模型问题有体系化的应对方法	了解: (1) 工业缺陷检测中分类模型的应用场景 (2) 分析了解公开的分类数据集 掌握: (1) 在分类数据集上获得初版模型的方法 (2) 在初版分类模型的基础上进行优化 (3) 可完成优化后模型的部署	了解: (1) 工业缺陷检测中检测模型的应用场景 (2) 分析了解公开的检测数据集 掌握: (1) 在检测数据集上获得初版模型的方法 (2) 在初版检测模型的基础上进行优化 (3) 可完成优化后模型的部署	了解: (1) 工业缺陷检测中分割模型的应用场景 (2) 分析了解公开的分割数据集 掌握: (1) 在分割数据集上获得初版模型的方法 (2) 在初版分割模型的基础上进行优化 (3) 可完成优化后模型的部署	了解: (1)量化的模型能力评估方法 (2)模型优化的整体思路 (3)从数据、模型到业务处理的模型优化方法 (4)优化后的交叉验证方法 (5)对选择的模型如何进行部署 掌握: (1)能通过模型基本指标及测试集的可视化结果分析模型的问题 (2)根据问题灵活运用模型优化的方法 (3)对优化的结果进行验证 (4)掌握模型部署方法

机器视觉技术工业应用讲习班 China Workshop on Industrial Applications of Machine Vision Technology

日程安排	2022/8/19 8:30-17:30				
课程名称	工业场景中模型调优实战方法	实践案例: 锂电池	PCB 内检 AI 检验	实践案例:光伏电池	深度学习应用中的高级技巧
授课老师	达摩院算法专家 路吾	达摩院算法专家 陈想	达摩院算法专家 陈想	达摩院算法专家 朗日	达摩院算法专家 路吾
课时	60 分钟	60 分钟	60 分钟	60 分钟	60 分钟
课程内容	了解: (1) 在项目场景中精度指标背后的意义 (2) 误报漏报产生的多种因素 掌握: (1) 精度指标判读、阈值修改及对模型的评价 (2) 掌握分析漏报、误报产生原因的方法 (3) 掌握推理加速及训练加速的方法	(1) 实战案例的问题分析 (2) 实战案例的破题过程与方案设计 (3) 方案执行过程中的问题及解决思路 (4) 多种方案的效果对比及最终选择原因 (5) 全程复现项目从理解到交付的关键过程,提供项目实际经验参考		中项目实际经验参考	了解: (1) 深度学习中的超参数设置与使用效果 (2) 数据扩充的多种前沿方案 (3) 高级的预训练模型获取方式 (4) 无监督训练方法在高良率或偶发缺陷中的应用

机器视觉技术工业应用讲习班 China Workshop on Industrial Applications of Machine Vision Technology

日程安排	2022/8/20 8:30-17:30		
课程名称	智能相机的特点及常用工具	机器视觉系统设计	
授课老师	深圳市视觉龙科技有限公司 实战专家 徐亚军	深圳市视觉龙科技有限公司 实战专家 徐亚军	
课时	180 分钟	180 分钟	
	了解:	了解:	
	(1) 智能相机的组成及特点	(1) 项目启动前的需求分析	
	(2) 相机标定基础知识	(2) 设计详细的项目规格书	
	(3) 轮廓定位与 Blob 分析概念	(3) 选择合适的硬件产品	
课程	(4) 检测工具组与边缘检测	(4) 视觉系统的验收准备	
	(5) 常用输出模块工具使用基础	(5) 项目验收要点分析	
内容		(6) 客户培训工作如何展开	
.,,,		(7) 案例分享	
介绍		应用:	
71-4		(1) 锂电池定位的项目设计流程	
		(2) 结合需求场景的光源控制器选型	