日期
12/06
2019
咨询
  • QQ扫一扫

  • Vision小助手
    (CMVU)

案例研究|基于人工智能的PCB表面瑕疵检测
收藏
2019-12-06 10:45:54来源: 中国机器视觉网

案例研究背景

   过去五十年,台湾的PCB产业以其供应链完整集中,品质优良及两岸布局完整为优势,从2010年起就在全球PCB市场占据30%的市场份额。近年来,得益于高端手机的推陈出新,2017年整体PCB产业链的两岸产值已超过300亿美金,突破历史新高。

   PCB产业为台湾最具竞争力的产业之一,而自动光学检测(AOI)设备是提升PCB产能及产品良率的关键设备。AOI设备可部署于生产线的中站,在不影响产能的前提下检查半成品,因此成为PCB制造过程中比重较高的必要投资,约占总投资额的15%。

困难与挑战

   AOI设备的检测流程是先利用AOI光学扫描待检的PCB,获取清晰影像,然后经过电脑图像处理技术检查出PCB 上是否有短路、多铜及少铜、断路、缺口、毛刺、铜偏斜等瑕疵。因为外观瑕疵的种类非常广泛,所以较一般电子零部件的瑕疵检测困难许多。

   目前AOI 检测面临过度筛检(OVERKILL)的现象。在极高的PCB良品率的要求下,AOI 设备的参数设定非常严格,也因此AOI 检测设备容易因过于敏感而出现过筛现象。经统计PCB 过筛率高达70%,即NG 产品中其实有70%的成品是合格的。目前多采取人工进行第二次筛选,将实际合格的PCB 再度送回产线。

PCB板上的典型缺陷

碁仕科技人工智能(AI)瑕疵检测系统

   来自台湾的碁仕科技(G4 Technology Co., Ltd) 主要致力于提供机器视觉和自动光学检测(AOI) 领域的成像解决方案,并向企业成功应用机器视觉技术提供服务,在生产製程中严格控管品质,不仅可提升产品良率确保运作效能,亦可有效降低生产检测成本。

   近日,碁仕科技推出AI瑕疵检测系统演示,该系统透过Allied Vision Manta G-032C 专业工业相机和Fujifilm 五百万画素高解析镜头的取像,搭配最新的AI 深度学习算法 (Deep learning algorithm)的SuaKIT AI 视觉检测软件,能实现PCB 即时检测并标注PCB 瑕疵。

   SUALAB的深度学习技术采用人工智能神经网络学习PCB图像,相较于传统视觉技术,该瑕疵检测系统可以分析複杂的影像,大幅提升自动化视觉检测的影像判读能力和准确度,并可将瑕疵进行自动分类。根据图像的复杂程度,深度学习算法初期需要的图像数据有所不同,一般提供50-100张即可。这意味着即使是针对每个客户公司不同的瑕疵标准,该系统也能够灵活应对。

使用Manta + Suakit进行PCB检测

高品质Manta相机为PCB检测精确度和稳定性倍添助力

   碁仕科技的AI瑕疵检测系统中配备的Manta    G-032C相机是一款分辨率为(656 x 492) 30万像素的高品质工业相机,其80 fps的速度可以满足正常需求,一般经过15分钟时间就可建立对应神经网络模型。在实际的生产线上,每秒钟可实时处理所采集的80张图像。

   “我们为此款PCB检测演示应用选择Manta相机主要是考虑到实时检测环境下的高速要求,这需要我们以较小的图片尺寸快速的传递图像,而该款相机拥有较快的帧率,可完全满足检测的速度需求。” 碁仕科技总经理Ken Chou强调。“此外,Allied Vision品牌相机的德国品质和稳定性使得其成为AI检测算法的最佳匹配。事实上,根据应用的不同,几乎所有的Allied Vision系列相机均可做为PCB系统检测的理想选择。例如,如果客户对检测的成像质量要求很高的情况下,也可使用Allied Vision的高分辨率相机系列,例如Prosilica GT。”

   Allied Vision的Manta系列相机是用途最为广泛的千兆网相机系列。这款相机提供众多模块化选择,包括弯头和板级版本,使得相机可与几乎任何应用整合。Manta 先进的功能集合,包括多相机同步、用户指令和以太网触发功能,可简化多相机应用的设置,减少整体布线工作并降低成本。

为你推荐