- 11/27
- 2019
-
QQ扫一扫
-
Vision小助手
(CMVU)
理论上,诸如深度学习、脸部辨识、先进绘图处理等等新学科,对于希望更新其STEM课程的各大专院校计算机科学(CS;EETT编按:台湾的大专院校多称为「资工」)与电子工程(EE)系所来说,似乎是非常容易拿来利用。
毕竟在商业媒体上充斥着对于神经网络以及利用大数据数据集进行图形辨识之各种垂直应用的大量宣传。拥有广泛基础的学术单位可以选择几个擅长的领域,例如医学或是工业自动化,然后将新开发的芯片或子系统架构,用来为那些垂直领域编写专属应用程序。
听起来很简单,对吧?这种模式以往在通讯以及嵌入式处理技术上都行得通。但是学界在未来几年会遇到基础性的速度障碍,有可能会妨碍建立有效的标准;最显著的问题就是在垂直领域进行高阶程序语言的简单扩展。
我们已经看到很多希望在软件方面有杰出表现的学校,以及那些希望子女未来出社会能找到好工作的学生家长们,把「写程序」当作能实现美梦的魔咒;但是,随着AI进一步普及化,所有被追捧的、关于编写程序的训练再也不那么重要。
在游戏以及嵌入式领域,已经由使用C++、JavaScript或Perl等语言明确定义的环境,转变为自动生成程序代码模块,在此软件程序设计师的天才已经接近被边缘化。再往下一个世代发展,深度学习与图形辨识的顶尖平台,将抛弃对人类程序设计师的需求。
因为这类硬件平台并不是以传统意义进行编程,它们是在机器层级由大型数据集进行训练,几乎不需要高阶程序语言。AI开发者在十年前就已经意识到这种转变,但很少有学校的CS、EE系所开始在课程上做调整,以因应这样的变化。
软件模块自动生成趋势并不意味着传统程序语言的消亡,而是那些程序代码会被「降级」为类嵌入式(embedded-like)的状态。事实上,仰赖高阶模块以及非编程训练平台的风险在于,以编译或面向对象语言编写程序的集体知识可能逐渐消失,就像是关于BASIC与FORTRAN等程序语言的知识也不复存在。
因此教育家们需要在保存高阶程序设计的学术知识,以及避免让学生与家长认为只要培养C++或Perl等程序语言专长就能找到好工作的两个面向之间取得平衡。
我们不知道我们到底知道什么、不知道什么
还有一个刚出现在工程系所的更大问题是,学术机构如非营利组织与政府机关,面临越来越多包括合规测试、学习成果导向结果之量化,以及为新领域应用复制课程等方面的需求。然而连领先的AI研究学者都还无法解释他们的系统是如何能针对困难问题达到优化结果。
在一些早期使用案例,例如自动驾驶车辆,美国交通部(Department of Transportation)已经遇到了关于「黑盒子」数据输入的最简单版本问题,如果其数据集无法在单一或多个面向反映真实世界,像是自驾车那样的系统可能会导致灾难性的失效。这种「大型多元数据集的充分性与完整性」挑战,在许多垂直领域可能会是深度学习的挑战,但这只是神经网络因本质可能会带来的更大问题之中,最简单的一种。
在多个模拟神经元之间使用多个隐藏的卷积连结层、未经训练的神经网络类型取得了最大的成功;AI研究人员能笼统地解释隐藏层中的倒传递(back-propagation)以及基因算法,但无法详细解释神经网络是如何达成其结论,以及该网络是如何调整其突触权重(synaptic weights)来改善其答案。
简而言之,产业界最优秀的工程与数学人才,也不了解神经网络为何能运作地如此出色,就算到未来,人类AI专家能掌握个中窍门的可能性也很低,遑论让他们向一般听众解释。
- 上一条:为何玉兔/嫦娥里CPU性能弱,手机都比它强?
- 下一条:机器视觉检测技术发展趋势分析