- 05/15
- 2018
-
QQ扫一扫
-
Vision小助手
(CMVU)
除了双眉紧蹙、紧盯赛场的球队教练,这两年 NHL 冰球联盟赛的看台上又多一位了“暗中观察”的人工智能教练。
当教练呵斥某位运动员的射门失误时,AI 正用每秒 10 次的频率追踪该球员的数据指标,挖掘到他同时有着极高的助攻次数。
就像当年,资金拮据的奥克兰棒球队运用赛伯计量学(Sabermetrics)创造了奇迹——其经理人比利 • 比恩综合上垒率衡量球员上垒的能力(OBP)、每一次打击可贡献的垒包数即长打率(SLG),来筛选拥有攻击力和特项技能的棒球员,最终帮球队在 2002 年赢得 103 场比赛,创下了低投入高收益的记录。
这个故事使大数据分析受到极大关注,也一度激活了赛事市场的应用,比如一些精明的体育管理层开始雇佣大量统计学家,并使用数据模型来管理球队的薪资。
如今,从改变球员价值评估到优化球队成员结构,利用自动化赛事规则分析进而精准调整参赛策略,赛事模拟训练等已经成为趋势……AI 已经开始帮助冰球、篮球等体育竞技领域实现在全局量化分析下做决定,赛事直播的营销推广和引流变得可控,在机器学习加持下的赛事游戏也越来越真实。
由此,体育科技的发展空间被逐年放大。根据 WinterGreen Research 的一份报告,2014 年体育科技市场的规模仅为 1.25 亿美元,而到 2021 年将达到 47 亿美元。ESPN 的数据专家约翰•霍林在 2012 年时就曾表示,职业篮球联盟里至少有 2/3 的球队已经在数据分析技术上进行投资。根据《纽约时报》在 2016 年报道,NBA 金州勇士队平均每场比赛都有 30.2 个三分球尝试,数据证明投三分球带来更高的得分率,而这也是目前球队侧重的打法。
不过,在三年前 Alex Martynov 决定创办 ICEBERG 时,数据分析在冰球等其他领域几乎没有开始应用。这家融合计算机视觉的人工智能分析公司,选择从冰球比赛切入,
“要知道冰球也是一项非常复杂的运动,运动员可以快速滑行,经常碰撞,每分钟更换一次,而且球非常小。技术上来讲,冰球是最难实时追踪的运动,因此降级开拓其它运动领域很容易。”Martynov 告诉我们。
冰球运动速度快、变化非常复杂,球员站位和活动背后的数据很难捕捉,尤其是通过人来记录更是难上加难。
ICEBERG 要先通过计算机视觉技术解决数据收集的问题。
每场比赛开始前,ICEBERG 会在冰场周围安装三台 FLIR 热像仪用作纪录。这样做是因为直播通常会裁掉一半以上的场景。虽然 FLIR 录制的视频分辨较低,甚至不如 iPhone 录制的现场画面,却可以为人工智能算法提供所需要的恒定全景图。
神经网络会识别视频数据上冰面的所有移动实体,分别是按球衣颜色分成两组 12 名球员、冰上裁判和一个直径 7.62 厘米、速度高达 160 公里/小时的冰球。通过在 10,000 个数字变体的数据集上训练,ICEBERG 的计算机视觉算法还可以根据球衣号码识别每个球员。
当然,神经网络也有搞砸的时候,例如,模型曾经无法识别哈萨克斯坦白色球衣上的金色数字。Martynov 告诉我们,“还有一支瑞士球队曾经穿着印着黑色数字的黑色的球衣。”
录入的数据被分为球队、球员、门将等三个统计维度,而 ICEBERG 的算法一共追踪 500 种不同的指标。系统会将每位球员的坐标与冰球的坐标进行匹配,记录每个人的传球率、身体阻截次数、断球次数、丢球次数、助攻次数以及进球总数。
一般而言,60 分钟的比赛会产生大约 100 万个数据点。其中不乏非常细微的观察,例如某个门将的防守盲点。总体来说冰球的进球率是 7-9%,ICEBERG 的算法可以帮助教练发现潜在的预期进球(xG),后者参数设置通常是球员的射门位置、方式,以及进攻方式,而每一场比赛的分析都会有一张 xG 的热图。
通常来说,主办方对拍摄冰球比赛进行分析使用没有任何限制,不过去年国际冰球联合会禁止了 ICEBERG 在世界锦标赛上拍摄捷克队比赛,表示视频版权属于主办方 IIHF 所有,此外冬季奥运会的拍摄许可也是 Martynov 正在洽谈的事项之一。
有时人工智能会发现与比赛分数迥然不同的结果。在一场加拿大对战瑞士的比赛,AI 发现后者比前者多滑行了 1.7 公里,在大部分时段里离球更近 5-10 公分,有着更长的控球时间,并且有更高的预期进球率。按数据分析预测,瑞士队的胜率高达 70%,然而加拿大对却以 3-0 的全胜的姿态摘得比赛冠军。
Martynov 解释说:「比赛大概有 40% 是随机运气,而另外 60% 则不然。我们的工作是预测 『非运气』 的那一部分。真的有客户会在数据显示获胜的情况下连续输掉五次比赛,教练会很焦急地打电话给我们的分析师,我通常会告诉他们,“淡定,这只是概率的问题。你们大可继续现在的打法,迟早会连赢五场比赛的。”
冰球不再是单纯的体能和技巧上的角逐,而是数据智能驱动的策略对抗。这是 ICEBERG 在行业打开局面的机会。
起初,24 岁的 Martynov 是从他从事风投行业的父亲那儿争取到了 25000 美元的启动资金,用这一小笔钱他召集自己在多伦多和莫斯科的程序员朋友,开发了平台的测试版本。
按 Martynov 的说法,公司在平台上线后几个月内就已经实现收支平衡,三年时间占据全球职业冰球队 5-7%的市场份额,还在去年入选了加拿大最有前景的人工智能初创公司之一。现在,公司已拥有大约 20 家球队客户,遍布了包括 NHL 的纽约岛人队在内的全球多个冰球联盟。
公司拥有明确的订阅收费模式,从每场比赛 400 美元到 800 美元不等。这意味着如果一支球队在一个赛季中连续打 60 场比赛,他需要支付 ICEBERG 30,000 美元。每场比赛之后,客户都会受到会收到一份成绩报告,并可以通过在线门户查询自己的表现。
同时,公司也会把分析师分配给每个球队客户,随时准备解答他们的问题。
对 Martynov 来说,签单是一个说服教练、经理以及俱乐部的漫长过程。譬如,中欧的教练对使用新技术非常谨慎。Martynov 与奥地利的萨尔茨堡红牛队谈了四个月。
“教练很困惑地问我,‘为什么我需要这个?’”Martynov 回忆道:“我告诉他们分析平台不是要取代教练或经理人,而是给球队一个战略优势。”
也有另一个极端,瑞典的韦克舍湖队和 Frjestad BK 队只用了五分钟就决定和 ICEBERG 签约。对于两队的教练来说,使用数据分析带来的竞争优势不容忽视。
不过,在 Martynov 看来,冰球市场并不大,几乎仅相当于足球市场 2% 的份额,公司仍然需要快速向其他领域拓展,“公司的发展速度不如我预想的那么快,我想在这之后进入足球市场。”
很明显,ICEBERG 这个指代进球得分和射中次数等统计信息背后海量数据的名字,也暗含了其野心不是占领某一两个细分领域那么简单。
- 上一条:计算机视觉二维卷积
- 下一条:厦门布局人工智能产业群,重点发展机器视觉等技术