- 11/24
- 2021
-
QQ扫一扫
-
Vision小助手
(CMVU)
研发背景
存算一体及人工智能神经网络芯片采用非冯诺依曼架构体系,可极大降低数据的访问延迟和传输能耗,提升计算速度。SOT-MRAM以其高速、高耐久度等优点,在此类应用中将发挥巨大的优势。当前,存算一体和人工智能神经网络芯片领域亟需一种全线性的多态存储器件(图1b),以便为人工智能神经网络的神经元、突触、存内计算等提供硬件支撑。但现有的SOT多态磁性存储器件及其他类型的存储器件大都是非全线性的(图1a),其输入-输出曲线的部分区域为线性,其他部分为非线性区,要使器件工作在线性区需要额外的时间、能耗和电路开销,阻碍了其在高速、低功耗和高集成密度的存算一体及人工智能神经网络芯片方面的应用[1]。
(a)目前的多态存储器件,(b)理想的全线性存储器件,(c)目前电流磁化翻转曲线,(d)通过调节DMI和交换耦合实现的线性磁化翻转曲线
论文发表
今年5月,微电子所杨美音副研究员和博士研究生李彦如为共同第一作者,微电子所先导中心罗军研究员和半导体所王开友研究员为通讯作者,在Physical Review Applied期刊上发表了题为“All-linear multistate magnetic switching induced by electrical current”的学术论文[2],该团队合作研制出全线性的电流诱导多态自旋轨道矩(SOT)磁性存储器件,并实现了低能耗、可编辑的突触功能,对基于SOT-MRAM的低功耗存算一体逻辑和神经形态计算提供了一种新方法。
(a)离子注入引起的全线性磁化翻转,(b)局域离子注入注入实现的可编译的突触功能
实验内容
为了获得全线性的多态磁性存储器件,该团队在理论上模拟调节磁性材料中的“DMI效应”和“交换耦合效应”的比例,发现可将非全线性的磁化翻转曲线调控成全线性的磁化翻转曲线(图1c,d)。该理论预测的结果获得了实验验证。该团队在本次工作创新的采用离子注入工艺,成功调节了普通磁性材料中“DMI效应”和“交换耦合效应”的比例,实现了SOT磁性存储器件的全线性磁化翻转(图2a)。同时,通过局域的离子注入,实现了无外场的线性多态存储和突触功能。该突触可在同一超低电流脉冲下实现兴奋和抑制功能,并具备可编译特性。
面内场Hx下垂直磁场脉冲作用的磁畴壁运动速度。样品(a) S1, (b) S2, 和 (c) S3. 插图分别是面内场Hx(负、零和正)下的磁畴壁运动的轨迹。(d) 测量的A和D值
优势概述
本项工作中样品的磁动力学过程观测,磁畴壁运动速度和DMI作用测量的工作由北京航空航天大学张学莹老师组合作提供(如图3),此系列测量表征工作利用了北航-致真团队自主研制的多功能高分辨率磁光克尔显微成像系统,该系统除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它自带了磁场探针台,能够让用户利用软件定义电、磁等多种想要的波形,在进行电输运测量的同时,观察器件磁畴的变化,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,并同步采集克尔图像信息,能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等,是传统的磁光克尔显微镜所不具备的。
多功能高分辨率磁光克尔显微成像系统
产品基本参数
· 极向和纵向克尔成像分辨率可达300 nm;
· 配置二维磁场探针台,面内磁场最高达1 T,垂直磁场最高达0.3 T(配置磁场增强模块后可达1.5 T);
· 快速磁场选件磁场反应速度可达1 μs;
· 可根据需要选配直流/ 高频探针座及探针;
· ·可选配二次谐波、铁磁共振等输运测试;
· 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;
· 4K~800K,80K~500K 变温选件可选。