日期
11/27
2023
咨询
  • QQ扫一扫

  • Vision小助手
    (CMVU)

影响机器视觉识别与定位系统的关键因素
收藏
2023-11-27 15:10:59来源: 中国机器视觉网

机器视觉在生产制造中主要用在视觉引导,尺寸测量,产品检测,物体识别等几个领域。 在这几个领域中,一个最基本的算法就是产品识别和定位,比如视觉引导机器人,要在图像中识别出要抓取的产品,并定位出坐标,才引导机器人到的产品位置。

微信图片_20231127151136.jpg

机器视觉在生产制造中主要用在视觉引导,尺寸测量,产品检测,物体识别等几个领域。 在这几个领域中,一个最基本的算法就是产品识别和定位,比如视觉引导机器人,要在图像中识别出要抓取的产品,并定位出坐标,才引导机器人到的产品位置。

尺寸测量,产品检测等也是一样的,在测量和检测之前,首先要知道有没有产品,产品的位置在哪里,才可以应用后续的各种分析工具。 因此,产品识别和定位是一个基本问题。

微信图片_20231127151150.png

视觉定位系统组成

依托机器视觉的机器人定位系统包含摄像机系统和控制系统。 其中摄像机系统中包括计算机(具有图像采集卡)、摄像机,主要收集视觉图像,并应用机器视觉算法。控制系统包含控制箱和计算机,对计算机末端具体位置完成控制。

工作区利用CCD摄像机进行拍摄,并使用计算机识别图像,得到跟踪特征,完成数据的计算和识别,借助逆运动学方式获取机器人每一位置的误差,再对高精度末端执行模块进行控制,科学调整机器人的位置和位姿。

微信截图_20231127151203.png

视觉定位系统关键因素

在工业生产领域,尤其是工业机器人的应用中,视觉识别定位系统显得尤为重要,在实际的生产中,要关注的不仅是能不能准确抓取,同时还要关注到其速度问题,而这一块一直是行业内的问题,我们经常遇到的工业机器人抓取通常速度是比较慢的。而一旦将速度提升上来,抓取的精度便会产生问题。

首先是数据量,在较为复杂的生产环境中,系统需要准确找到需要识别定位的产品; 其次是速度,如何在一些标准的生产线将速度提升到ms级别,过往的算法虽然可以在普通发挥作用,但是随着算法不断发展,深度学习算法往往需要搭载更加理想的GPU来实现; 然后便是问题的核心,定位精度,在深度学习系统中,我们看到的图像都是有一定的缩放,我们需要整个系统在原图达到像素精度的匹配; 剩下的就是识别的准确性,在很多情况下,我们能能到的学习数据很少,在这种状态,如何来进一步提高识别的准确性。

微信图片_20231127151206.jpg

视觉定位 面临挑战

如果要设计一个可行的产品识别和定位的算法,需要克服几方面的困难:

· 快速的指定产品:工业产品千差万别,因此,对于每一个具体的应用,需要从几张,甚至一张图像上,快速指定需要查找的产品,比如当前产线需要定位铆钉的位置,拍一张照片并进行相应的学习,就可以在后续的图像中进行搜索定位。

· 快速的搜索产品:对于一张200万像素的图片,通常要求在几十毫秒的时间可以识别和定位出产品的位置。

· 高精度的定位:工业生产对精度和公差有严格的要求,因此产品的定位就要力求准确。现在普遍要求识别定位算法可以达到一个像素级别的定位。

· 可以适应产品缺失、遮挡、脏污等的影响:如果一个产品被遮挡,导致产品在图像中缺失一定比列,需要依然可以识别定位到物体。反之,如果产品表面发生脏污,导致表面的特征发生变化,需要依然可以识别定位。

· 可以适应光照亮度不均匀的影响:如果产品的亮度发生变化,比如一半亮一半暗,需要依然可以识别定位。

· 可以识别旋转的产品:产品通常可能在360度范围内旋转。

· 可以识别多个产品:一张图像中可能有多个产品,需要分别识别定位。

· 可以准确识别接近对称的物体:接近对称的物体很容易别识别成错误的方向,需要进行相应的设计。

· 可以应对物体的极性翻转:比如学习的产品是白底黑字,但是实际上产品图像有可能是黑底白字,需要可以识别。

(文章来源于中国传动网,如有侵权,请联系删文)